Saturday, 13 August 2011

Introduction

There are two fundamental kinds of entity in thermodynamics, states of a system, and processes of a system. This allows two fundamental approaches to thermodynamic reasoning, that in terms of states of a system, and that in terms of cyclic processes of a system.
Central to thermodynamics are the concepts of system and surroundings.
A thermodynamic system can be defined in terms of its states. In this way, a thermodynamic system is a macroscopic physical object, explicitly specified in terms of macroscopic physical and chemical variables which describe its macroscopic properties. The macroscopic state variables of thermodynamics have been recognized in the course of empirical work in physics and chemistry.
A thermodynamic system can also be defined in terms of the processes which it can undergo. Of particular interest are cyclic processes. This was the way of the founders of thermodynamics in the first three quarters of the nineteenth century.
The surroundings of a thermodynamic system are other thermodynamic systems that can interact with it. An example of a thermodynamic surrounding is a heat bath, which is considered to be held at a prescribed temperature, regardless of the interactions it might have with the system.
The macroscopic variables of a thermodynamic system can under some conditions be related to one another through equations of state. They can be combined to express internal energy and thermodynamic potentials, which are useful for determining conditions for equilibrium and spontaneous processes.
Thermodynamics describes how systems change when they interact with one another or with their surroundings. This can be applied to a wide variety of topics in science and engineering, such as engines, phase transitions, chemical reactions, transport phenomena, and even black holes. The results of thermodynamics are essential for other fields of physics and for chemistry, chemical engineering, aerospace engineering, mechanical engineering, cell biology, biomedical engineering, materials science, and economics, to name a few.
Many of the empirical facts of thermodynamics are comprehended in its four laws, principles that can also be taken as an axiomatic basis for it. The first law specifies that energy can be exchanged between physical systems as heat and thermodynamic work. The second law concerns a quantity called entropy, that expresses limitations on the amount of thermodynamic work that can be delivered to an external system by a thermodynamic process.
Thermodynamic facts can often be explained by viewing macroscopic objects as assemblies of very many microscopic or atomic objects that obey Hamiltonian dynamics. The microscopic or atomic objects exist in species, the objects of each species being all alike. Because of this likeness, statistical methods can be used to account for the macroscopic properties of the thermodynamic system in terms of the properties of the microscopic species. Such explanation is called statistical thermodynamics; also often it is also referred to by the term 'statistical mechanics', though this term can have a wider meaning, referring to 'microscopic objects', such as economic quantities, that do not obey Hamiltonian dynamics.
This article is focused mainly on classical thermodynamics which primarily studies systems in thermodynamic equilibrium. Non-equilibrium thermodynamics is often treated as an extension of the classical treatment, but statistical mechanics has brought many advances of the field.

History-
The history of thermodynamics as a scientific discipline generally begins with Otto von Guericke who, in 1650, built and designed the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres. Guericke was driven to make a vacuum in order to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656, in coordination with English scientist Robert Hooke, built an air pump. Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Then, in 1679, based on these concepts, an associate of Boyle's named Denis Papin built a steam digester, which was a closed vessel with a tightly fitting lid that confined steam until a high pressure was generated.
Later designs implemented a steam release valve that kept the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and a cylinder engine. He did not, however, follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine, followed by Thomas Newcomen in 1712. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time.
The fundamental concepts of heat capacity and latent heat, which were necessary for the development of thermodynamics, were developed by Professor Joseph Black at the University of Glasgow, where James Watt was employed as an instrument maker. Black and Watt performed experiments together, but it was Watt who conceived the idea of the external condenser which resulted in a large increase in steam engine efficiency. Drawing on all the previous work led Sadi Carnot, the "father of thermodynamics", to publish Reflections on the Motive Power of Fire (1824), a discourse on heat, power, energy and engine efficiency. The paper outlined the basic energetic relations between the Carnot engine, the Carnot cycle, and motive power. It marked the start of thermodynamics as a modern science.
The first thermodynamic textbook was written in 1859 by William Rankine, originally trained as a physicist and a civil and mechanical engineering professor at the University of Glasgow. The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin).
The foundations of statistical thermodynamics were set out by physicists such as James Clerk Maxwell, Ludwig Boltzmann, Max Planck, Rudolf Clausius and J. Willard Gibbs.
During the years 1873-76 the American mathematical physicist Josiah Willard Gibbs published a series of three papers, the most famous being On the Equilibrium of Heterogeneous Substances, in which he showed how thermodynamic processes, including chemical reactions, could be graphically analyzed, by studying the energy, entropy, volume, temperature and pressure of thethermodynamic system in such a manner, one can determine if a process would occur spontaneously. Also Pierre Duhem in the 19th century wrote about chemical thermodynamics. During the early 20th century, chemists such as Gilbert N. Lewis, Merle Randall, and E. A. Guggenheimapplied the mathematical methods of Gibbs to the analysis of chemical processes.
In 1909, Constantin Carathéodory presented a purely mathematical axiomatic formulation of equilibrium thermodynamics, a description often referred to as geometrical thermodynamics.


Etymology-

The etymology of thermodynamics has an intricate history. It was first spelled in a hyphenated form as an adjective (thermo-dynamic) and from 1854 to 1868 as the noun thermo-dynamics to represent the science of generalized heat engines.
The components of the word thermodynamics are derived from the Greek words  therme, meaning heat, and dynamis, meaning power.
Pierre Perrot claims that the term thermodynamics was coined by James Joule in 1858 to designate the science of relations between heat and power. Joule, however, never used that term, but used instead the term perfect thermo-dynamic engine in reference to Thomson’s 1849 phraseology.
By 1858, thermo-dynamics, as a functional term, was used in William Thomson's paper An Account of Carnot's Theory of the Motive Power of Heat.

Branches of description-
The study of thermodynamical systems has developed into several related branches, each using a different fundamental model as a theoretical or experimental basis, or applying the principles to varying types of systems.


Classical thermodynamics-

Classical thermodynamics is the description of the states (especially equilibrium states) and processes of thermodynamical systems, using macroscopic, empirical properties directly measurable in the laboratory. It is used to model exchanges of energy, work, heat, and matter, based on the laws of thermodynamics. The qualifier classical reflects the fact that it represents the descriptive level in terms of macroscopic empirical parameters that can be measured in the laboratory, that was the first level of understanding in the 19th century. A microscopic interpretation of these concepts was provided by the development of statistical thermodynamics.

 

Statistical thermodynamics-

Statistical thermodynamics, also called statistical mechanics, emerged with the development of atomic and molecular theories in the second half of the 19th century and early 20th century, supplementing thermodynamics with an interpretation of the microscopic interactions between individual particles or quantum-mechanical states. This field relates the microscopic properties of individual atoms and molecules to the macroscopic, bulk properties of materials that can be observed on the human scale, thereby explaining thermodynamics as a natural result of statistics, classical mechanics, and quantum theory at the microscopic level.

Chemical thermodynamics-
Chemical thermodynamics is the study of the interrelation of energy with chemical reactions and chemical transport and with physical changes of state within the confines of the laws of thermodynamics.

 

Treatment of equilibrium-

Equilibrium thermodynamics studies transformations of matter and energy in systems as they approach equilibrium. The equilibrium means balance. In a thermodynamic equilibrium state there is no macroscopic flow and no macroscopic change is occurring or can be triggered; within the system, every microscopic process is balanced by its opposite; this is called the principle of detailed balance. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial state, subject to accurately specified constraints, to calculate what the state of the system will be once it has reached equilibrium. A thermodynamic system is said to be homogeneous when all its locally defined intensive variables are spatially invariant. A system in thermodynamic equilibrium is homogeneous unless it is affected by a time-invariant externally imposed field of force, such as gravity, electricity, or magnetism.
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium; for they are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. For their thermodynamic study, more general concepts are required for non-equilibrium systems than for equilibrium systems. Non-equilibrium systems can be in stationary states that are not homogeneous even when there is no externally imposed field of force; in this case, the description of the internal state of the system requires a field theory. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.

Laws of thermodynamics-
Thermodynamics is principally based on a set of four laws which are universally valid when applied to systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following:
Zeroth law of thermodynamics: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.
This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamics system under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (eg. Brwonian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature. Thus, if one seeks to decide if two bodies are at the same temperature, it is not necessary to bring them into contact and measure any changes of their observable properties in time. The law provides an empirical definition of temperature and justification for the construction of practical thermometers.
The zeroth law was not initially recognized as a law, as its basis in thermodynamical equilibrium was implied in the other laws. The first, second, and third laws had been explicitly stated prior and found common acceptance in the physics community. Once the importance of the zeroth law for the definition of temperature was realized, it was impracticable to renumber the other laws, hence it was numbered the zeroth law.
First law of thermodynamics: The internal energy of an isolated system is constant.
The first law of thermodynamics is an expression of the principle of conservation of energy. It states that energy can be transformed (changed from one form to another), but cannot be created or destroyed.
The first law is usually formulated by saying that the change in the internal energy of a closed thermodynamic system is equal to the difference between the heat supplied to the system and the amount of work done by the system on its surroundings. It is important to note that internal energy is a state of the system  whereas heat and work modify the state of the system. In other words, a specific internal energy of a system may be achieved by any combination of heat and work; the manner by which a system achieves a specific internal energy is path independent.
Second law of thermodynamics: Heat cannot spontaneously flow from a colder location to a hotter location.
The second law of thermodynamics is an expression of the universal principle of decay observable in nature. The second law is an observation of the fact that over time, differences in temperature, pressure, and chemical potential tend to even out in a physical system that is isolated from the outside world. Entropy is a measure of how much this process has progressed. The entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium.
In classical thermodynamics, the second law is a basic postulate applicable to any system involving heat energy transfer; in statistical thermodynamics, the second law is a consequence of the assumed randomness of molecular chaos. There are many versions of the second law, but they all have the same effect, which is to explain the phenomenon of irreversibility in nature.
Third law of thermodynamics: As a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value.
The third law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute reference point for the determination of entropy. The entropy determined relative to this point is the absolute entropy. Alternate definitions are, "the entropy of all systems and of all states of a system is smallest at absolute zero," or equivalently "it is impossible to reach the absolute zero of temperature by any finite number of processes".
Absolute zero, at which all activity would stop if it were possible to happen, is −273.15 °C (degrees Celsius), or −459.67 °F (degrees Fahrenheit) or 0 K (kelvin).

System Models

An important concept in thermodynamics is the thermodynamic system, a precisely defined region of the universe under study. Everything in the universe except the system is known as the surroundings. A system is separated from the remainder of the universe by a boundary which may be notional or not, but which by convention delimits a finite volume. Exchanges of work, heat, or matter between the system and the surroundings take place across this boundary.
In practice, the boundary is simply an imaginary dotted line drawn around a volume when there is going to be a change in the internal energy of that volume. Anything that passes across the boundary that effects a change in the internal energy needs to be accounted for in the energy balance equation. The volume can be the region surrounding a single atom resonating energy, such as Max Planck defined in 1900; it can be a body of steam or air in a steam engine, such as Sadi Carnot defined in 1824; it can be the body of a tropical cyclone, such as Kerry Emanuel theorized in 1986 in the field of atmospheric thermodynamics; it could also be just one nuclide (i.e. a system of quarks) as hypothesized in quantum thermodynamics.
Boundaries are of four types: fixed, moveable, real, and imaginary. For example, in an engine, a fixed boundary means the piston is locked at its position; as such, a constant volume process occurs. In that same engine, a moveable boundary allows the piston to move in and out. For closed systems, boundaries are real while for open system boundaries are often imaginary.
Generally, thermodynamics distinguishes three classes of systems, defined in terms of what is allowed to cross their boundaries:
As time passes in an isolated system, internal differences in the system tend to even out and pressures and temperatures tend to equalize, as do density differences. A system in which all equalizing processes have gone to completion is considered to be in a state of thermodynamic equilibrium.
In thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than systems which are not in equilibrium. Often, when analysing a thermodynamic process, it can be assumed that each intermediate state in the process is at equilibrium. This will also considerably simplify the situation. Thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state are said to be reversible processes.

States & Processes-
There are two fundamental kinds of entity in thermodynamics, states of a system, and processes of a system. This allows two fundamental approaches to thermodynamic reasoning, that in terms of states of a system, and that in terms of cyclic processes of a system.
The approach through states of a system requires a full account of the state of the system as well as a notion of process from one state to another of a system, but may require only a partial account of the state of the surroundings of the system or of other systems.
The notion of a cyclic process does not require a full account of the state of the system, but does require a full account of how the process occasions transfers of matter and energy between the system and its surroundings, which must include at least two heat reservoirs at different temperatures, one hotter than the other. In this approach, the notion of a properly numerical scale of temperature is a presupposition of thermodynamics, not a notion constructed by or derived from it.

Thermodynamic state variables-

When a system is at thermodynamic equilibrium under a given set of conditions of its surroundings, it is said to be in a definite thermodynamic state, which is fully described by its state variables.
Thermodynamic state variables are of two kinds, extensive and intensive. Examples of extensive thermodynamic variables are total mass and total volume. Examples of intensive thermodynamic variables are temperature, pressure, and chemical concentration; intensive thermodynamic variables are defined at each spatial point and each instant of time in a system. Physical macroscopic variables can be mechanical or thermal. Temperature is a thermal variable; according to Guggenheim, "the most important conception in thermodynamics is temperature."
If a system is in thermodynamic equilibrium and is not subject to an externally imposed force field, such as gravity, electricity, or magnetism, then (subject to a proviso stated in the following sentence) it is homogeneous, that is say, spatially uniform in all respects. There is a proviso here; a system in thermodynamic equilibrium can be inhomogeneous in the following respect: it can consist of several so-called 'phases', each homogeneous in itself, in immediate contiguity with other phases of the system, but distinguishable by their having various respectively different physical characters; a mixture of different chemical species is considered homogeneous for this purpose if it is physically homogeneous. For example, a vessel can contain a system consisting of water vapour overlying liquid water; then there is a vapour phase and a liquid phase, each homogeneous in itself, but still in thermodynamic equilibrium with the other phase. For the immediately present account, systems with multiple phases are not considered, though for many thermodynamic questions, multiphase systems are important.
In a sense, a homogeneous system can be regarded as spatially zero-dimensional, because it has no spatial variation.
If a system in thermodynamic equilibrium is homogeneous, then its state can be described by a number of intensive variables and extensive variables.
Intensive variables are defined by the property that if any number of systems, each in its own separate homogeneous thermodynamic equilibrium state, all with the same respective values of all of their intensive variables, regardless of the values of their extensive variables, are laid contiguously with no partition between them, so as to form a new system, then the values of the intensive variables of the new system are the same as those of the separate constituent systems. Such a composite system is in a homogeneous thermodynamic equilibrium. Examples of intensive variables are temperature, chemical concentration, pressure, density of mass, density of internal energy, and, when it can be properly defined, density of entropy.
Extensive variables are defined by the property that if any number of systems, regardless of their possible separate thermodynamic equilibrium or non-equilibrium states or intensive variables, are laid side by side with no partition between them so as to form a new system, then the values of the extensive variables of the new system are the sums of the values of the respective extensive variables of the individual separate constituent systems. Obviously, there is no reason to expect such a composite system to be in in a homogeneous thermodynamic equilibrium. Examples of extensive variables are mass, volume, and internal energy. They depend on the total quantity of mass in the system.
Though, when it can be properly defined, density of entropy is an intensive variable, entropy itself does not fit into this classification of state variables. The reason is that entropy is a property of a system as a whole, and not necessarily related simply to its constituents separately. It is true that for any number of systems each in its own separate homogeneous thermodynamic equilibrium, all with the same values of intensive variables, removal of the partitions between the separate systems results in a composite homogeneous system in thermodynamic equilibrium, with all the values of its intensive variables the same as those of the constituent systems, and it is reservedly or conditionally true that the entropy of such a restrictively defined composite system is the sum of the entropies of the constituent systems. But if the constituent systems do not satisfy these restrictive conditions, the entropy of a composite system cannot be expected to be the sum of the entropies of the constituent systems, because the entropy is a property of the composite system as a whole. Therefore, though under these restrictive reservations, entropy satisfies some requirements for extensivity defined just above, entropy in general does not fit the above definition of an extensive variable.
Being neither an intensive variable nor an extensive variable according to the above definition, entropy is thus a standout variable, because it is a state variable of a system as a whole. This is one reason for distinguishing the study of equilibrium thermodynamics from the study of non-equilibrium thermodynamics.
The physical reason for the existence of extensive variables is the time-invariance of volume in a given inertial reference frame, and the conservation of mass, momentum, angular momentum, and energy. But the standout quantity entropy is never conserved in real physical processes; all real physical processes are irreversible. The motion of planets seems reversible on a short time scale (millions of years), but their motion, according to Newton’s law, is mathematically an example of deterministic chaos. Eventually a planet will suffer an unpredictable collision with an object from its surroundings, outer space in this case, and consequently its future course will be radically unpredictable. Theoretically this can be expressed by saying that every natural process dissipates some information from the predictable part of its activity into the unpredictable part. The predictable part is expressed in the generalized mechanical variables, and the unpredictable part in heat.
There are other state variables which can be regarded as conditionally 'extensive' subject to reservation as above, but not extensive as defined above. Examples are the Gibbs free energy, the Helmholtz free energy, and the enthalpy. Consequently, just because for some systems under particular conditions of their surroundings such state variables are conditionally conjugate to intensive variables, such conjugacy does not make such state variables extensive as defined above. This is another reason for distinguishing the study of equilibrium thermodynamics from the study of non-equilibrium thermodynamics. In another way of thinking, this explains why heat is to be regarded as a quantity that refers to a process and not to a state of a system.
The properties of a system can under some conditions be described by an equation of state which specifies the relationship between state variables.

 

Thermodynamic processes-

A thermodynamic process is defined by changes of state internal to the system of interest, combined with transfers of matter and energy to and from the surroundings of the system or to and from other systems. A system is demarcated from its surroundings or from other systems by partitions which may more or less separate them, and may move as a piston to change the volume of the system and thus transfer work.
 
Dependent and independent variables for a process-
A process is described by changes in values of state variables of systems or by quantities of exchange of matter and energy between systems and surroundings. The change must be specified in terms of prescibed variables. The choice of which variables are to be used is made in advance of consideration of the course of the process, and cannot be changed. Certain of the variables chosen in advance are called the independent variables. From changes in independent variables may be derived changes in other variables called dependent variables. For example a process may occur at constant pressure with pressure prescribed as an independent variable, and temperature changed as another independent variable, and then changes in volume are considered as dependent. Careful attention to this principle is necessary in thermodynamics. Even Nobel Prize winners can make mistakes about this if they are not careful.

Changes of state of a system-
In the approach through states of the system, a process can be described in two main ways.
In one way, the system is considered to be connected to the surroundings by some kind of more or less separating partition, and allowed to reach equilibrium with the surroundings with that partition in place. Then, while the separative character of the partition is kept unchanged, the conditions of the surroundings are changed, and exert their influence on the system again through the separating partition, or the partition is moved so as to change the volume of the system; and a new equilibrium is reached. For example, a system is allowed to reach equilibrium with a heat bath at one temperature; then the temperature of the heat bath is changed and the system is allowed to reach a new equilibrium; if the partition allows conduction of heat, the new equilibrium will be different from the old equilibrium.
In the other way, several systems are connected to one another by various kinds of more or less separating partitions, and to reach equilibrium with each other, with those partitions in place. In this way, one may speak of a 'compound system'. Then one or more partitions is removed or changed in its separative properties or moved, and a new equilibrium is reached. The Joule-Thomson experiment is an example of this; a tube of gas is separated from another tube by a porous partition; the volume available in each of the tubes is determined by respective pistons; equilibrium is established with an initial set of volumes; the volumes are changed and a new equilibrium is established. Another example is in separation and mixing of gases, with use of chemically semi-permeable membranes.
 
Cyclic processes-
A cyclic proces is a process that can be repeated indefinitely often without changing the final state of the system in which the process occurs. The only traces of the effects of a cyclic process are to be found in the surroundings of the system or in other systems. This is the kind of process that concerned early thermodynamicists such as Carnot, and in terms of which Kelvin defined absolute temperature, before the use of the quantity of entropy by Rankine and its clear identification by Clausius. For some systems, for example with some plastic working substances, cyclic processes are practically nearly unfeasible because the working substance undergoes practically irreversible changes. This is why mechanical devices are lubricated with oil and one of the reasons why electrical devices are often useful.
A cyclic process of a system requires in its surroundings at least two heat reservoirs at different temperatures, one at a higher temperature that supplies heat to the system, the other at a lower temperature that accepts heat from the system. The early work on thermodynamics tended to use the cyclic process approach, because it was interested in machines which would convert some of the heat from the surroundings into mechanical power delivered to the surroundings, without too much concern about the internal workings of the machine. Such a machine, while receiving an amount of heat from a higher temperature reservoir, always needs a lower temperature reservoir that accepts some lesser amount of heat, the difference in amounts of heat being converted to work. Later, the internal workings of a system became of interest, and they are described by the states of the system. Nowadays, instead of arguing in terms of cyclic processes, some writers are inclined to derive the concept of absolute temperature from the concept of entropy, a variable of state.
Typically, each thermodynamic process is distinguished from other processes in energetic character according to what parameters, such as temperature, pressure, or volume, etc., are held fixed. Furthermore, it is useful to group these processes into pairs, in which each variable held constant is one member of a conjugate pair.
Several commonly studied thermodynamic processes are:
Isobaric process: occurs at constant pressure.
Isochoric process: occurs at constant volume (also called isometric/isovolumetric).
Isothermal process: occurs at a constant temperature.
Adiabatic process: occurs without loss or gain of energy by heat.
Isentropic process: a reversible adiabatic process, occurs at a constant entropy.
Isenthalpic process: occurs at a constant enthalpy.
Steady state process: occurs without a change in the internal energy.